IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2021/05/04

  • 研究者氏名
    Researcher Name

    夏井俊悟 Shungo NATSUI
    准教授 Associate Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    プロセスシステム工学研究部門 環境適合素材プロセス研究分野
    Division of Process and System Engineering, Environmental-Conscious Material Processing
  • 研究キーワード
    Research Keywords

    金属製錬
    高温物理化学
    融体界面の力学
    数値解析
    Metallurgy
    High-temperature physical chemistry
    Interface dynamics for high-temperature melt
    Numerical analysis
研究テーマ
Research Subject
観測と計算を融合した高温分散系の力学的探求
Exploration of Dynamics in High-Temperature Dispersion System by Combining Observation and Calculation

研究の背景 Background

分散する融体相の問題は、鉄鋼製錬では”hold-up”や”metal  emulsion”、銅製錬では”mechanical slag loss”、溶融塩電解製錬では”metal fog”など呼称され、いずれも環境問題および経済的に非常に重要であることに着眼しています。熱還元、電解など多岐にわたる高温プロセス中の分散相流動を操作することは従来様々な困難があり完全な制御は不可能とも思われますが、発展を続けているイメージング、センシング、大規模数値計算など、先端の技術資源を最大限利用することで新たな現象の記述、制御方法の開拓が期待されています。

The behavior of dispersed melt phase when they exist in the high-temperature metallurgical processes is intimately associated with the overall reaction rate; thus the problem of the dispersed melt phase is not only environmental impact but also economically important. To understand the detailed flow characteristics of dispersed melt system, it has been made possible by recent progresses in digital optical technology, sensing, and large-scale computational systems.

研究の目標 Outcome

溶融塩化物中で電析した分散融体のサブミリ秒スケールでの電位-電流応答、熱測定および直接観察から、電析融体界面の移動現象モデル化を試みます。また、ショートレンジの粒子構造からマクロスコピックな流動までを具体化するEulerian-Lagrangianシミュレーションや幾何学的にデータ形状を読み解くトポロジー解析の視点で、金属製錬プロセスの中で流動する分散相の力学的特性解明のために新奇なスケール階層的アプローチを実践します。

For a clear understanding of the behavior of dispersed melt phase, the time change of electrode surface morphology on the submillisecond/micrometre scale in molten salt is tracked by electrochemical measurement and high-speed microscopy. And we are trying to develop new Eulerian-Lagrangian numerical simulation scheme and to apply the topological data analysis for understanding high-temperature melt interfacial flow characteristics in high-temperature metallurgical processes.

研究図Research Figure

Fig.1. Eulerian-Lagrangian coupling method for detailed modeling of melt dripping in coke bed. Fig.2. Photographs of the electrodeposited Ca-Li melt and black colloidal metal formed on the flat Mo electrode at 823 K. Fig.3. Measurement of column and film lifetimes in bubble-induced two-liquid flow from the approach of simulation and experiment.

文献 / Publications

S. Natsui, et al., Sci. Rep., Vol. 8, 13114, 2018.; S. Natsui, et al., Phys. Rev. E, Vol. 97, No. 6, 062802, 2018.; 夏井 俊悟ら, 鉄と鋼, Vol. 104, No. 7, 347-357, 2018.; S. Natsui, et al., Chem. Eng. Sci., Vol.175, 25-39, 2018.

研究者HP