IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2023/08/01

  • 研究者氏名
    Researcher Name

    出倉駿 Shun DEKURA
    助教 Assistant Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    マテリアル・計測ハイブリッド研究センター ハイブリッド材料創製研究分野
    Materials-Measurement Hybrid Research Center, Hybrid Material Fabrication
  • 研究キーワード
    Research Keywords

    分子性固体
    水素機能性
    電子物性
    固体NMR
    Molecular solids
    Hydrogen-related functionalities
    Electronic properties
    Solid-state NMR
研究テーマ
Research Subject
水素機能性分子性固体の開発と物性開拓
Development of hydrogen-functional molecular solids and exploration of physical properties

研究の背景 Background

水素は変幻自在な元素であり、広範な材料中でその機能を激変させる鍵を握っています。また、次世代エネルギー源としても注目されており、材料中水素の自在制御の学理構築は新学問領域・新社会基盤の実現に繋がります。一方、分子性固体はその分子・集合体の設計自由度や柔軟性、環境調和性の観点で優れた材料群であり、水素機能性の分子性固体は次世代の持続可能社会を支える新材料となる可能性を秘めています。

Hydrogen is a protean element, which holds the key to drastically changing the functionalities of a wide range of materials. It is also attracting attention as a next-generation energy source, and the establishment of scientific basis for fully controlling hydrogen in materials will lead to the realization of new scientific fields and a new social infrastructure. Molecular solids are an excellent material group in terms of their rich designability of molecular/assembled structures, flexibility, and environmental compatibility; therefore, hydrogen-functional molecular solids have the potential to become new materials that can realize a sustainable society in the next generation.

研究の目標 Outcome

水素結合能や動的プロトンを有する分子性固体を対象に、誘電性や無加湿プロトン伝導性など水素機能に加え、電子物性との相関機能の開拓を試みています。特に、分子性固体の単結晶性を活かして、分子設計から結晶化-構造解析-単結晶物性測定-第一原理計算と一貫して行うことで、新物質の機能を開拓するとともに、その根底にある学理を追究しています。

Hydrogen functionalities such as dielectric properties and anhydrous proton conductivity, and hydrogen–electron-coupled properties have been investigated for molecular solids with hydrogen-bonding ability and dynamics of protons. Utilizing the availability of single crystals, developments of new functionalities of new materials, and pursuing the underlying scientific principles are challenged by consistently performing molecular design, crystallization, structural analysis, single-crystal measurements, and first-principles calculations.

研究図Research Figure

Fig.1. Photograph of the single crystals of (ImH+)(H2PO4)(H3PO4), and temperature dependence of single-crystal anhydrous proton conductivity.

Fig.2. Vapochromism in the Zn bis(dithiolene) complex crystal induced by adsorption of hydrogen-bonding vapor molecules with charge transfer.

Fig.3. Molecular arrangement, Wannier functions, and electronic band structures of the hydrogen-bonding crystal of BTBT derivative.

文献 / Publications


  1. Phys. Chem. Lett. 2023, 14, 3461.; Angew. Chem. Int. Ed. 2022, 61, e202212872.; J. Mater. Chem. C 2020, 8, 14939.; Angew. Chem. Int. Ed. 2018, 57, 9823.

研究者HP