IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2021/05/06

  • 研究者氏名
    Researcher Name

    山本達 Susumu YAMAMOTO
    准教授 Associate Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    計測研究部門 放射光ナノ構造可視化研究分野
    Division of Measurements, Synchrotron Radiation Soft X-ray Microscopy
  • 研究キーワード
    Research Keywords

    オペランド計測
    放射光X線
    触媒
    表面化学
    次世代放射光施設
    Operando measurements
    Synchrotron radiation X-ray
    Catalyst
    Surface chemistry
    Next-generation synchrotron radiation facility
研究テーマ
Research Subject
放射光X線オペランド計測による触媒表面科学の開拓
Catalytic surface science opened by synchrotron radiation X-ray operando measurements

研究の背景 Background

触媒・光触媒、燃料電池、リチウムイオン電池などの物質・エネルギー変換過程において、物質の表面・界面は反応場として重要な役割を果たしています。これらの反応場は通常ガス雰囲気や液体に接しており、超高真空中での計測を前提とした従来の表面科学的な手法では直接観測することは困難でした。最近、反応場を反応中に直接計測可能な「オペランド」計測の開発が急速に発展しています。

Surfaces and interfaces of materials play important roles as reaction fields in the material and energy conversion processes such as catalysts/photocatalysts, fuel cells, lithium ion batteries. These reaction fields are usually in contact with gas atmospheres and liquids, and it has been difficult to directly observe them using conventional surface science techniques in ultrahigh vacuum. Recently, “operand” measurements, which can directly study the reaction field under the reaction, are developing rapidly.

研究の目標 Outcome

放射光X線・赤外光・レーザーといった様々な光を用いて、触媒表面・界面の分子や光励起キャリアをオペランド観測する研究を行ってきました。「次世代放射光施設」の高輝度放射光X線を活用した新しいオペランド計測法を開発し、モデル系だけでなく実用材料における機能発現メカニズムを解明することを目指しています。

My research theme is "operando observation of molecules and photo-excited carriers on catalyst surfaces/interfaces" using various light sources such as synchrotron radiation X-rays, infrared light, and ultrashort lasers. I aim to develop a novel operando measurement method that utilizes the high-brilliant synchrotron radiation X-rays at the "next-generation synchrotron radiation facility", and to elucidate the mechanism of function expression not only in model systems but also in practical materials.

研究図Research Figure

Fig.1. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) system developed at SPring-8 BL07LSU.Fig.2. Different wetting behavior of water on two Cu surfaces revealed by O 1s AP-XPS spectra. (p(H2O)= 1 Torr, T= 295 K)Fig.3. Photocatalytic activity of TiO2 surfaces is positively correlated with the lifetime of photo-excited carriers, which was experimentally determined by time-resolved XPS.

文献 / Publications

[1] e-J. Surf. Sci. Nanotechnol. 17, 130-147 (2019). [2] Phys. Chem. Chem. Phys. 20, 19532-19538 (2018). [3] J. Synchrotron Rad. 21, 352-365 (2014). [4] J. Phys. Soc. Jpn. 82, 021003 (2013). [5] Rev. Sci. Instrum. 83, 023109 (2012). [6] J. Phys. Chem. C (Letters) 111, 7848-7850 (2007).