Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology


LAST UPDATE 2023/08/08

  • 研究者氏名
    Researcher Name

    森合達也 Tatsuya MORIAI
    特任助教 Specially Appointed Assistant Professor
  • 所属
    Professional Affiliation

    Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology

    Molecular functions
  • 研究キーワード
    Research Keywords

    Complex chemistry
    Cluster chemistry
    Catalytic chemistry
Research Subject
Development of high-performance atomic materials by precise design of metal clusters

研究の背景 Background

粒径約1 nmの金属クラスターは、従来のナノ粒子よりもさらに小さい物質群であり、ナノサイズ以上の物質には見られないような電子状態や幾何構造など興味深い特性を示します。しかし、これまでの技術では、原子数や元素組成比を精密に制御した金属クラスター合成は困難とされてきたため、金属クラスターの素性は未だ明らかになっていません。この課題を解決するため、我々の研究室ではデンドリマーを鋳型分子とする手法を独自に開発したことにより、様々な金属クラスターの精密合成を実現してきました。

Metal clusters with a diameter of 1 nm are substances even smaller than nanoparticles, and they exhibit unique properties such as electronic states and geometric structures not found in larger nano-sized materials. However, the nature of clusters has remained unknown due to the technical challenges on synthesis of clusters with fine-controlled atomicity and composition by conventional methods. To overcome this obstacle, our group has developed a template method using dendrimers, realizing precise synthesis of various clusters.

研究の目標 Outcome


We have successfully accelerated catalytic reactions and achieved selective synthesis of high-energy compounds by the hybridization of multi-elements with distinct roles in a cluster. In addition, the atomicity and geometric structure of clusters have been optimized, leading to significant decline in the activation barrier of reactions. Based on these achievements, we aim to create the high-performance materials beyond the extension of conventional substances by the precise arrangement of clusters on an atomic scale.

研究図Research Figure

Fig.1. Catalytic cyclohexene oxidation by Au-Ag-Cu mono- and multi-metallic clusters. Miniaturization and hybridization of the catalyst enhanced performance and led to selective generation of the high-energy compound.

Fig.2. The relationship between the initial reaction temperature and the catalyst size over dry reforming of methane by Ni. Precise design of clusters provided specific sites leading to decline in the activation energy.

文献 / Publications

Nature Commun. 9, 3873 (2018). Angew. Chem. Int. Ed., 59, 23051–23055 (2020). Angew. Chem. Int. Ed., 134, e202114353 (2022). Chem. Sci., 13, 5813–5817 (2022).