Institute of Multidisciplinary Research for Advanced Materials, Tohoku University


LAST UPDATE 2021/05/02

  • 研究者氏名
    Researcher Name

    吉松公平 Kohei YOSHIMATSU
    講師 Lecturer
  • 所属
    Professional Affiliation

    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    無機材料研究部門 ナノ機能物性化学研究分野
    Division of Inorganic Material Research, Nano Physical Chemistry
  • 研究キーワード
    Research Keywords

    Oxide thin films
    Metal-insulator transition
Research Subject
Development of unique physical properties in oxide thin films

研究の背景 Background


Transition-metal oxides exhibit unique properties such as high-temperature superconductivity and giant magnetoresistance. Application of the properties enables us to further develop information society and solve energy and environmental issues. The properties can be developed and controlled using thin-film form, resulting that it is possible to maximize the potentials of transition-metal oxides beyond bulk materials.

研究の目標 Outcome

酸化物薄膜の合成にはパルスレーザ堆積法を用いています。また、合成した薄膜に対してさらなる加工・化学反応を行うことで薄膜特有の物性開拓を行っています。具体的には(1) 高品質な単結晶薄膜ヘテロ構造の形成、(2) 化学反応等を利用した新規物性の創生と制御、(3) 放射光光源を用いた電子状態観測、を主な手法として研究を進めています。

Pulsed-laser deposition technique is utilized to obtain oxide thin films. Experimental studies on the following subjects have been performed in order to achieve the research subjects: (1) fabrication of high-quality single crystalline oxide films and heterostructures, (2) Creation and control of unique physical properties induced by chemical reactions, and (3) observation of electronic structures using synchrotron spectroscopy.

研究図Research Figure

Fig.1. Schematics of pulsed-laser deposition technique to grow oxide thin films and heterostructures.

Fig.2. Schematics of a compact Li-ion electrochemical cell to control and investigate electronic properties of oxide thin films.

Fig.3. Typical oxide devices using ionic liquids. The physical properties can be controlled by applying external fields.

文献 / Publications

J. Phys. Soc. Jpn. 88, 035001 (2019). Phys. Rev. Mater. 2, 115003 (2018). APL Mater. 6, 101101 (2018). Appl. Phys. Lett. 112, 232103 (2018). npj QuantumMaterials 3, 3 (2018). Sci. Rep. 7, 12544 (2017). J. Phys. Chem. C 121, 18717 (2017). Appl. Phys. Lett. 111, 162101 (2017). Phys. Rev. B 93, 195159 (2016).