ISIR

The Institute of Scientific and Industrial Research, Osaka University

大阪大学
産業科学研究所

LAST UPDATE 2017/08/09

  • 研究者氏名
    Researcher Name

    野田祐樹 Yuki NODA
    特任助教 Research Assistant Professor
  • 所属
    Professional Affiliation

    大阪大学産業科学研究所
    The Institute of Scientific and Industrial Research, Osaka University

    先進電子デバイス研究分野
    Department of Advanced Electronic Devices
  • 研究キーワード
    Research Keywords

    有機エレクトロニクス
    金属ナノ粒子
    プリンテッドエレクトロニクス
    Organic electronics
    Metal nanoparticles
    Printed electronics
研究テーマ
Research Subject
有機エレクトロニクスのための材料・物性物理・プロセス開発
Development of material & fabrication process aiming at realization of organic electronics

研究の背景 Background

有機物を基盤とする電子デバイスは、柔軟性・生体適合性・大面積化などの特徴を生かすことで、これまでのシリコンエレクトロニクスでは実現困難なアプリケーションを開発できる可能性が高い。そのためには材料開発や物性測定のみならず、最終的な実装を見据えたプロセスとデバイスの開発が求められる。

Electronic devices composed of organic materials have lots of characteristics that are difficult to achieve with silicon-based electronics such as flexibility, biocompatibility, and large area processability. To make full use of such a striking feature, it's required, not only to develop materials or to investigate physical property, but also to develop fabrication processes and devices assuming what it should be.

研究の目標 Outcome

これまで、有機無機複合体や生体適合性ゲルの材料開発から、有機強誘電体および有機半導体の印刷技術に関する研究を行ってきた。有機無機複合体ではフタロシアニンダブルデッカー錯体と金ナノ粒子の複合構造の合成に成功し、20K以下で量子的な電子輸送特性を観測した。印刷技術においては表面張力や外向流によりミクロ液滴の動きをコントロールすることで高均質な有機単結晶薄膜の作製に成功した。今後は生体信号計測を始めとする柔軟なエレクトロニクスデバイスの実装技術を開発する。

I have been engaged in material development and printing technologies such as organic/inorganic composite, biocompatible gels, organic semiconductors and organic ferroelectrics. As for the organic/inorganic composite, I succeeded in synthesizing the assembled structure composed of phthalocyanine double decker complex and gold nanoparticle, and observed a quantum electron transport property below 20 K. As for the printing technology, an array of a highly homogeneous organic single crystal thin films are successfully fabricated by controlling the movement of micro droplets with surface tension and/or outward flow. In the future, I will develop a mounting technology for flexible electronic devices with the aim of detecting a biomedical signal.

研究図Research Figure

Fig.1. (a) Images of bis-(phthalocyaninato)-lanthanide(III) protected gold nanoparticles. (b) TEM images of assemble structure of bis(phthalocyaninato)terbium-(III) protected gold nanoparticles. Fig.2. Typical mixing dynamics of miscible microdroplets. Sequential microscope images of wetting, dewetting and sinking, shown with their respective schematic diagrams at the bottom. Fig.3. (a) Fabrication process and (b) morphology of thin organic ferroelectric crystals captured by polarization microscope. (c) Electric polarization versus electric field hysteresis loops. (d) Piezoresponse force microscopy phase image of polarized domains.

文献 / Publications

(1)Sci. Rep., 2014, 4, 3758-1 - 3758-7. (2)Adv. Funct. Mater. 2015, 25, 4022–4031. (3)Adv. Mater. 2015, 27, 6475–6481.

研究者HP