IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2017/02/27

  • 研究者氏名
    Researcher Name

    西原洋知 Hirotomo NISHIHARA
    准教授 Associate Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    高分子・ハイブリッド材料研究センター
    Polymer・Hybrid Materials Research Center (PHyM)
  • 研究キーワード
    Research Keywords

    多孔質材料
    蓄電デバイス
    水素貯蔵
    燃料電池
    Porous materials
    Batteries
    Hydrogen storage
    Fuel cells
研究テーマ
Research Subject
機能性ナノ空間材料の創製と応用
Development of functional nanospace materials and their applications

研究の背景 Background

結晶中の空隙、多孔質材料の細孔、粒子や繊維の間隙などに存在する「空間」は、物質の貯蔵、反応、輸送の場として重要です。化学反応や物質の分離・精製、エネルギー貯蔵および変換、センサーやバイオ関連など、多くの分野において、持続可能な社会の発展に繋がるイノベーションを達成するために、高度な「空間」制御技術の開発が強く求められております。

Chemical reactions, storage of energy, and diffusion/transportation take place in ‘space’ which exists in a variety of materials as inter-atomic space in crystal, pores of porous materials, or inter-space of particles/fibers. In order to develop new innovation which realizes sustainable society, the development of advanced technology of controlling ‘space’ is highly demanded in many fields, such as chemical reaction, separation, purification, energy storage/conversion, sensors, and bio-applications.

研究の目標 Outcome

炭素材料は軽量で導電性があり化学的・熱的に安定であり、なおかつ空間を形成させ易いなど多くの利点を持っています。そこで、炭素材料の構造をナノレベルで精密に制御し、なおかつ他の物質と組み合わせることで、高度にナノ空間を機能化した新規材料を開発し、水素貯蔵、キャパシタ、二次電池、燃料電池などの分野に役立てることを目標としています。

Carbon materials have many advantages, such as light weight, electric conductivity, chemical/thermal stability, and high porosity. This research aims to develop carbon-based hybrid materials which have highly functionalized nanospace, and are useful for various applications, such as hydrogen storage, supercapacitors, secondary batteries, and fuel cells.

研究図Research Figure

Fig.1. A schematic illustration of the concept of hydrogen storage by the combination of spillover and physisorption (upper), and H2 isotherms based on this concept in Pt-loaded porous carbon (bottom). Fig.2. A schematic illustration of charge/discharge based on quinone group in zeolite-templated carbon (upper), and its cyclic voltammogram which indeed shows large peaks corresponding to a quinone/hydroquinone redox couple (bottom). Fig.3. A preparation scheme of Si@carbon-shell material from SiO2 nanoparticles through electrochemical reduction (upper), and its charge/discharge capacities compared with a simple mixture of Si/C (bottom).

文献 / Publications

Chem. Commun., 54, 3327 (2018). Chem. Commun., 53, 13348 (2017). Nat. Commun., 8, 109 (2017). ACS Nano, 10, 10689 (2016). Adv. Funct. Mater., 26, 6418 (2016). J. Phys. Chem. C, 118, 9551 (2014). Carbon, 67, 792 (2014). Nanoscale, 6, 10574 (2014). 

研究者HP