RIES

Research Institute for Electronic Science, Hokkaido University

北海道大学
電子科学研究所

LAST UPDATE 2017/02/25

  • 研究者氏名
    Researcher Name

    押切友也 Tomoya OSHIKIRI
    助教 Assistant Professor
  • 所属
    Professional Affiliation

    北海道大学電子科学研究所
    Research Institute for Electronic Science, Hokkaido University

    グリーンフォトニクス研究分野
    Laboratory of Green Photonics
  • 研究キーワード
    Research Keywords

    局在表面プラズモン共鳴
    人工光合成
    光触媒
    エネルギー変換
    localized surface plasmon resonance
    artificial photosynthesis
    photocatalyst
    energy conversion
研究テーマ
Research Subject
プラズモン光アンテナを用いた人工光合成系の開発
Development of artificial photosynthesis by utilizing plasmonic light harvesting antenna

研究の背景 Background

地球規模のエネルギー・環境問題解決のためには、太陽光エネルギーを水素をはじめとする化学物質に変換する人工光合成システムの開発が不可欠です。また、水素自体は貯蔵や輸送の点で取り扱いが困難であるため、水素を安定に保存する手法の開発が待たれています。アンモニアは比較的容易に液化が可能で、その分子中に高い含有率で水素を含むことから、水素キャリアとして期待されています。

To solve the global energy and environmental problems, an artificial photosynthesis system that enables solar energy conversion to chemical materials, such as hydrogen, is indispensable. On the other hand, hydrogen is not suitable for storage and transportation because it has a large volume and easily penetrates into its container. Ammonia has garnered attention as a potential hydrogen carrier, and a fuel for vehicles. Ammonia is easily condensed to liquid, and is dense in hydrogen content.

研究の目標 Outcome

太陽光を余すことなく利用可能な高効率な人工光合成システムの開発へ向けて研究を行っています。貴金属のナノ粒子が示す局在表面プラズモン共鳴による光アンテナ効果を利用することにより半導体光触媒の応答波長を制御可能するとともに、目的物に応じて酸化還元反応を進行可能な助触媒の開発を行っています。

The main objective of the research is the development of high-efficient artificial photosynthetic system. Noble metal nanoparticles exhibit localized surface plasmon resonance (LSPR) that can be used as a light harvesting antenna. We focus on the control of the responsible wavelength of the photocatalysts by utilizing LSPR and the development of redox co-catalysts to obtain desired products.

研究図Research Figure

Fig.1. (a) Histogram of the action spectrum of the apparent quantum efficiency of NH3 formation on plasmon-induced ammonia synthetic system using an Au-nanoparticle loaded SrTiO3 substrate. The solid line indicates the LSPR band. (b) A schematic representation of plasmon-induced ammonia synthetic system. Fig.2. (a) An irradiation time dependence of H2 (red circle) and O2 (blue circle) evolution of water splitting systems using an Aunanoparticle loaded SrTiO3 substrate at the pH combination of 3 and 6.8. (b) A schematic representation of plasmon-induced water splitting system. Fig.3. (a) H2 and O2 evolution rates of water splitting systems using an Au-nanoparticle loaded SrTiO3 substrate with anatase or rutile layers compared with that without a TiO2 layer. (b) Energy band diagram of the plasmon-induced water splitting system using an Au-nanoparticle loaded SrTiO3 substrate with the rutile TiO2 layer.

文献 / Publications

Chem. Lett. (2015) accepted for publication. Angew. Chem. Int. Ed. 53 (39), 10350 (2014). Angew. Chem. Int. Ed. 53 (37), 9802 (2014). J. Phys. Chem. C, 117 (47), 24733 (2013). 特願 2014-021110.

研究者HP