IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2021/05/07

  • 研究者氏名
    Researcher Name

    岩瀬和至 Kazuyuki IWASE
    助教 Assistant Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    金属資源プロセス研究センター エネルギーデバイス化学研究分野
    Center for Mineral Processing and Metallurgy, Chemistry of Energy Conversion Devices
  • 研究キーワード
    Research Keywords

    電極触媒
    酸化還元反応
    ナノ材料
    燃料電池
    Electrocatalysts
    Redox reaction
    Nano-materials
    Fuel cells
研究テーマ
Research Subject
ナノ構造の制御された新規電極触媒材料の開発とその応用
Development of novel nano-structured materials for electrocatalysts and their applications

研究の背景 Background

持続可能な社会の実現に向けて、高効率な物質・エネルギー変換を可能にする電極触媒の開発が望まれています。金属活性中心を有する電極触媒では、その配位環境が触媒活性を決める一つの重要な決定因子です。つまり、高活性な電極触媒を開発するためには、目的とする反応に応じてその金属活性中心周りの配位構造を適切に制御する必要があります。

Development of electrocatalysts which can convert chemicals and/or energies in high efficiencies are desirable for realizing the sustainable society. For electrocatalysts which possess metal active centers, the coordination environment of metal centers is one of the important determining factors of catalytic activity and reaction selectivity of them. Thus, regulation of the coordination structure of metal active centers is essential to develop highly active and selective electrocatalysts for the target reactions.

研究の目標 Outcome

本研究では、金属活性中心の構造を制御することで、高活性な電極触媒の設計・開発を行います。例えば、無機材料の合成手法を適切に選択し、ナノ構造やその結晶構造を制御する、あるいは高分子等の担体と組み合わせることで、新規材料の開発を行います。最終的には、それらを実際に燃料電池や人工光合成で用いることが可能な触媒へと展開することを目指します。

The objective of this research is designing and developing electrocatalysts with high activity and/or selectivity by regulation of coordination structure of metal active centers. For example, developing new synthesis routes of inorganic materials for regulating nano-structure or crystal structure and hybridizing such inorganic materials with polymers or carbon support are possible approaches. Applications of those electrocatalysts to fuel cells or artificial photosynthesis systems are also targets of this research.

研究図Research Figure

Fig.1. (top) Schematic illustration of Cu modified covalent triazine frameworks (Cu-CTFs), and (bottom) cyclic voltammograms in the presence of oxygen for CTF (black) and Cu-CTF (red).Fig.2. (top) Schematic illustration of Ni-CTF and molecular structure of Ni-tetraphenyl-porphyrin (Ni-TPP), and (bottom) potential dependence of faradaic efficiencies for carbon dioxide reduction to carbon monoxide for Ni-CTF and Ni-TPP.Fig.3. (top) Schematic illustration of coordination structure of Cu(I)-S complex and Cu(I) doped in sulfur linked CTF (Cu-S-CTF), and (bottom) cyclic voltammograms in the presence of oxygen for Cu-S-CTF (red), Cu(I)-S complexes (colored lines) and S-CTF (black).

文献 / Publications

Chem. Sci., 2018, 9, 3941., ACS Catal., 2018, 8, 2693., ChemElectroChem, 2018, 5, 805., Chem. Lett., 2018, 47, 304., Small, 2016, 12, 6083., J. Phys. Chem. C, 2016, 120, 15729., Angew. Chem. Int. Ed., 2015, 54, 11068.

研究者HP