IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2021/05/20

  • 研究者氏名
    Researcher Name

    上杉祐貴 Yuuki UESUGI
    助教 Assistant Professor
  • 所属
    Professional Affiliation

    東北大学多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    プロセスシステム工学研究部門 光物質科学研究分野
    Division of Process and System Engineering, Laser Applied Material Science
  • 研究キーワード
    Research Keywords

    光共振器
    高強度レーザー場
    レーザーコンプトン散乱
    吸収分光
    Optical cavity
    High-intensity lasers fields
    Laser-Compton scattering
    Absorption spectroscopy
研究テーマ
Research Subject
自立安定な光共振器システムの開発とその応用
Development of self-resonating optical cavity system and its applications

研究の背景 Background

光共振器は物質とレーザー光の相互作用長を10,000倍以上に増大することができる高感度な装置です.重力波検出器のように光の位相差を精密に測定するために用いられるほか,高感度の吸収分光法や,真空の複屈折を測定する実験などにも応用されています.また光共振器内にレーザー光を蓄積して高強度のレーザー場を生成するためにも利用されています.

An optical cavity is highly sensitive device which can increase the interaction length of laser light through material by more than 10,000 times. It is used for precision measurement of an optical phase difference like gravitational-wave detectors, high-sensitive absorption spectroscopy, experiments of the vacuum birefringence measurement and so on. Furthermore, the cavity is also utilized for accumulating laser light in it to produce high-intensity laser fields.

研究の目標 Outcome

光共振器は外乱に敏感で取り扱いが大変難しいという欠点がありましたが,最近“Feedback-freecavity”という外乱に対して自立安定性を備えた光共振器の開発に成功しました.この光共振器システムを応用・実用化することで,これまで実験室レベルでしか扱えなかった精密計測や高強度レーザー場生成の技術を,産業・医療分野に展開することを目指しています.

Recently, we demonstrated a highly stable optical cavity, the “Feedback-free cavity”, which overcomes a problem that conventional cavities are too delicate to treat in environment noise. We aim to expand the laboratory-based applications of the cavities, like precision measurement or laser power storage, into utilization in industrial and medical fields.

研究図Research Figure

Fig.1. A conceptual diagram of the feedback-free cavity with self-resonating mechanism. The laser amplifier (Amp.) amplifies the leaked light from the optical cavity. Therefore, the light frequency always satisfies the resonance condition of the cavity regardless of the fluctuation of the cavity length. Fig.2. a) An ultra-high reflectivity mirror. b) A frame body of the cavity. c) The measured lifetime of the optical cavity. The finesse of the cavity was 646,000. Fig.3. The transmitted light power from the cavity. a, b) The resonance was broken by strong mechanical shock. c) The resonance was stable in environment noise.

文献 / Publications

arXiv:1610.03141v1 (2016). APL Photonics 1, 026103 (2016). Rev. Sci. Inst. 86, 043303 (2015). Nucl. Instrum. Meth. B 319, 17-23 (2014).

研究者HP